Data loading methods for the R package glatos

Updated: 2019-02-26

Contents

1 Overview

1.1

1.2
1.3

Loading data from GLATOS, OTN, and VEMCO
1.1.1 Built-in functions
1.1.2 Data objects and classes
Loading data from other sources

Tips to improve speed and efficiency Lo

2 Detection data

2.1
2.2

Requirements oL e
Examples e e e e
2.2.1 Loading GLATOS data
2.2.2 Loading OTN data o e
2.2.3 Other formats - CSV file exported from a VUE database

3 Receiver location data

3.1
3.2

4.1
4.2

Requirements oL
Examples e e
3.2.1 Loading GLATOS data (entire network)
3.2.2 Loading GLATOS data (single project workbook)
3.2.3 Other formats. e

Animal tagging and biological data

Requirements
Examples o e e
4.2.1 Loading GLATOS data (single project workbook)
4.2.2 Other formats. L

5 Transmitter specification data

5.1
5.2

Requirements oL e
Examples e
5.2.1 Loading data from a VEMCO tag specsfile
5.2.2 Other formats. e

14
14
15
15
15
17

17
17
18
18
19

1 Overview

This vignette describes methods for loading data into the R package glatos. Sections are organized by data
type (detections, receiver locations, etc), and each section contains examples for:

1. data in standardized formats from the Great Lakes Acoustic Telemetry Observation System (GLATOS),
the Ocean Tracking Network (OTN), and VEMCO using built-in data loading functions; and

2. data in non-standard formats that require loading using non-glatos functions and modification to meet
glatos requirements.

1.1 Loading data from GLATOS, OTN, and VEMCO

The glatos package contains five functions (see Built-in functions) designed to load data files in standardized
formats from the GLATOS, the OTN, and VEMCO. Each data loading function:

1. loads data into an R session consistently and efficiently using the best available methods and

2. returns an object that meets the requirements of glatos package functions.

Thus, using glatos load functions ensures that resulting data conform to the requirements of other functions
in the package (e.g., summarize_detections, detection_bubble plot) and relieves users from the work of
reformatting their data to meet requirements of each specific function.

1.1.1 Built-in functions
The glatos package includes five data loading functions:

o read__glatos _detections reads detection data from a comma-separated-values text file obtained from
the GLATOS Data Portal and returns an object of class glatos _detections that is also a data.frame.

e read__otn__detections reads detection data from a comma-separated-values text file obtained from
the Ocean Tracking Network and returns an object of class glatos detections that is also a
data.frame.

e read__glatos receivers reads receiver data from a comma-separated-values text file obtained from
the GLATOS Data Portal and returns an object of class glatos receivers that is also a data.frame.

o read__glatos _workbook reads data from a GLATOS project-specific MS Excel workbook (*.xlsm
file) and returns a list of class glatos workbook with two-elements; one of class glatos_receivers
and one of class glatos animals (both are also data.frames).

« read_vemco__tag specs reads tag specification data from an MS Excel workbook (*.xls file) pro-
vided by VEMCO and returns a list with two elements; one containing tag specifications and one
containing tag operating schedules. (both are also data.frames).

1.1.2 Data objects and classes

Most of the functions listed above return an object with a glatos-specific S3 class name (e.g.,
glatos__detections) in addition to a more general class (e.g., data.frame). Currently, no methods ex-
ist for glatos classes and such classes are not explicitly required by any function, so glatos classes can merely
be thought of as labels showing that the objects were produced by a glatos function and will therefore be
compatible with other glatos functions. Beware, as with any S3 class, that it is possible to modify a glatos
object to the point that is will no longer be compatible with glatos functions. The Data Requirements
vignette provides an overview of data requirements of glatos functions.

data_requirements.html
data_requirements.html

1.2 Loading data from other sources

To use glatos functions with data that are not in one of the standard formats described above, those data
will need to be:

1. loaded into R using some other function (e.g., read_csv) and

2. modified to ensure that all requirements of the desired function are met.

Strictly speaking, there are no requirements of the package as a whole, but input data are checked within
each individual function to determine if requirements are met. Nonetheless, the Data Requirements vi-
gnette provides a set of data requirements, including column names, types, and formats, that will ensure
compatibility with all glatos functions.

For each data type (e.g., detection, receiver location, etc), this vignette shows how data from a comma-
separated-values text file can be loaded into R using non-glatos functions and then modified to meet the
glatos requirements.

1.3 Tips to improve speed and efficiency

The main examples in the this vignette use only base R functions. However, there are many contributed
packages that can provide functions that can improve workflow speed and efficiency. After most examples
using base R functions, boxed examples are also given to expose users to alternative examples using functions
from contributed packages. Most boxed tips show use of functions from the data.table package. If you are not
familiar with data.table, then read through the introductory vignette (see vignette("datatable-intro",
package = "data.table")). For more on data.table, see the vignettes (browseVignettes("data.table")).
In addition to data.table, one boxed tip draws from the lubridate package because it is a fast way to coerce
timestamps strings to the date-time class POSIXct.

A future version of this vignette may include examples using other packages such as the tidyverse.

A few notes about boxed-example code:

1. Make sure the relevant packages are installed and attached:

#install.packages("data.table")
library(data.table)

#install.packages ("lubridate”)
library(lubridate)

2. The detection data object has been named differently in the box examples than the data.frame version
(dtc2 for data.table vs. dtc for data.frame) so that both sets of code can be run without the box
example code interacting with the base R examples. However, the box examples do require that all
base R code that comes before it has also been run.

2 Detection data

2.1 Requirements

glatos functions that accept detection data as input will typically require a data.frame with the following
seven columns:

data_requirements.html
data_requirements.html

e detection_ timestamp_ utc
e receiver_sn

e deploy_lat

e deploy_long

e transmitter_codespace

e transmitter id

e sensor_value

e sensor unit

e animal id

Some functions will also require at least one categorical column to identify location (or group of locations).
These can be specified by the user, but examples of such columns in a GLATOS standard detection file are:

e glatos_ array
e station
o glatos_ project_ receiver

For definitions of any of the above fields, see the Data Requirements vignette) and function-specific help files
(e.g., 7summarize_detections).

Any data.frame that contains the above columns (in the correct formats) should be compatible with all glatos
functions that accept detection data as input. Use of the data loading functions read_glatos detections and
read__otn__detections will ensure that these columns are present and formatted correctly, but can only be
used on data in GLATOS and OTN formats. Data in other formats will need to be loaded using other
functions (e.g., read.csv, fread, etc.) and carefully checked for compatibility with glatos functions (see Other
formats - CSV file exported from a VUE database).

2.2 Examples
2.2.1 Loading GLATOS data

The read__glatos_detections function reads detection data from a standard detection export file (*.csv file)
obtained from the GLATOS Data Portal and checks that the data meet glatos package requirements. Data
are read using fread in the data.table package, timestamps are formatted as class POSIXct and dates are
formatted as class Date.

First, we will use system.file to get the path to the walleye_detections.csv file included in the glatos package.

Set path to walleye_detections.csv example dataset
wal_det_file <- system.file("extdata", "walleye_detections.csv",
package = "glatos")

Next, we will load data from walleye detections.csv using read__glatos detections.

Attach glatos package
library(glatos)

Read in the walleye_detections.csv file using ‘read_glatos_detections’
walleye_detections <- read_glatos_detections(wal_det_file)

Let’s view the structure of the resulting data frame (we’ve modified the str default arguments to show only
first record in each column).

data_requirements.html
https://glatos.glos.us/portal

View the structure and data from first row

str(walleye_detections)

#> Classes 'glatos_detections' and 'data.frame': 7180 obs. of 30 wariables:
#> & animal_id : chr "153" ...

#> § detection_timestamp_utc : POSIXct, format: "2012-04-29 01:48:37" ..

#> ¢ glatos_array : chr "TTB" ...

#> $§ station_no : chr "2" ...

#> $§ transmitter_codespace : chr "A69-9001" ...
#> § transmitter_id : chr "32054" ...

#> $ sensor_wvalue : nmum NA NA ...

#> $ sensor_unit : chr NA ...

#> ¢ deploy_lat : num 43.4 ...

#> ¢ deploy_long : num -84 ...

#> $ receiver_sn : chr "113213" ...

#> ¢ tag_type : chr NA ...

#> § tag_model : chr NA ...

#> $ tag_serial_number : chr NA ...

#> $ common_name_e : chr "walleye" ...

#> § capture_location : chr "Tittabawassee River" ...
#> $§ length : num 0.565 0.565 ...

#> $ wetight : num NA NA ...

#> $ sex : chr "F" ...

#> $§ release_group : chr NA ...

#> $ release_location : chr "Tittabawassee" ...
#> $ release_latitude : num NA NA ...

#> $§ release_longitude : num NA NA ...

#> $ utc_release_date_time : POSIXct, format: "2012-03-20 20:00:00" ...
#> $ glatos_project_transmitter: chr "HECWL" ...
#> $§ glatos_project_receiver : chr "HECWL" ...
#> § glatos_tag_recovered : chr "NO" ...

#> § glatos_caught_date : Date, format: NA ...
#> § station : chr "TTB-002" ...

#> $ min_lag : num 258 137 ...

The result is an object with 30 columns and two classes: glatos detections and data.frame. The
glatos__detections class label indicates that the data set was created using a glatos load function and
therefore should meet requirements of any glatos function that accepts detection data as input. See the
Data Requirements vignette) for field definitions.

2.2.2 Loading OTN data

The read_otn_ detections function reads in detection data (*.csv files) obtained from the Ocean Tracking
Network and reformats the data to meet requirements of glatos functions. Data are read using fread in the
data.table package, timestamps are formatted as class POSIXct and dates are formatted as class Date.

Set path to blue_shark_detections.csv example dataset
shrk_det_file <- system.file("extdata", "blue_shark_detections.csv",
package = '"glatos")

Read in the blue_shark_detections.csv file using “read_otn_detections’
blue_shark_detections <- read_otn_detections(shrk_det_file)

data_requirements.html

View the structure of blue_shark_detections

str(blue_shark_detections)

#> Classes 'glatos_detections' and 'data.frame': 3000 obs. of 34 wariables:
#> § collectioncode : chr "NSBS" ...

#> $ animal_id : chr "NSBS-Hooker'" ...

#> $ scientificname : chr "Prionace glauca' ...

#> $ common_name_e : chr "blue shark" ...

#> $§ datelastmodified : chr "2014-12-18" ...

#> § detectedby : chr "HFX" ...

#> ¢ glatos_array : chr "HFX" ...

#> $§ station : chr "HFX047" ...

#> $ receiver_sm : chr "146" ...

#> $§ bottom_depth : num 151 151 ...

#> § receiver_depth : num 146 146 ...

#> § transmitter_td : chr "A69-9001-24395" ...

#> § transmitter_codespace : chr "A69-9001" ...

#> $§ sensorname : logi NA ...

#> $§ sensorraw : logi NA ...

#> § sensortype : chr "pinger" ...

#> $§ sensorvalue : logi NA ...

#> § sensorunit : logt NA ...

#> $§ detection_timestamp_utc: POSIXct, format: "2014-08-29 06:11:09" ...
#> § timezone : chr "UTC" ...

#> § deploy_long : num -63.2 ...

#> ¢ deploy_lat : num 44.2 ...

#> § st_setsrid_4326 : chr "0101000020E61000008A1F63EESA9ELFCO4LF1E166A4D1B4640" . ..
#> $ yearcollected : int 2014 2014 ...

#> $ monthcollected : int 8 8 ...

#> $§ daycollected : int 29 29 ...

#> ¢ julianday : int 241 241

#> § timeofday : mum 6.19 ..

#> § datereleasedtagger : logi NA ...

#> § datereleasedpublic : logi NA ...

#> § local_area : chr "HALIFAX" ...

#> § notes : logt NA ...

#> § citation : chr "Hebert, D., Barthelotte, J., 0'Dor, R., Stokesbury, M., Branton,
#> R. 2009. Ocean Tracking Network Halifaz Canada"| __truncated__

#> § unqdetecid : chr "HFX-A69-9001-24395-180148" ...

The resulting object has 34 columns, many of which are not present in the GLATOS standard format.
However, some columns have been modified to meet glatos requirements, and thus, the glatos detections
class name has been added.

2.2.3 Other formats - CSV file exported from a VUE database

Detection data in any format than GLATOS or OTN will need to be

modified to meet the requirements of glatos functions. Here, we show an example using detection data that
have been exported from a VEMCO VUE database. There is currently no glatos function to load detection
data directly into an R session from VUE software, so data in that format will need to be:

1. loaded into R using some other function (e.g., read__csv) and

2. modified to ensure that all requirements of the desired function are met.

In the example below, we will use the base R functions read.csv and as.POSIXct to load detection data
from a csv file and reformat the data to be consistent with the schema described above. Tip boxes will also
show alternatives (simpler and/or faster) for these methods using functions in the data.table and lubridate
packages.

First, get the path to a file (*.csv) that contains detection data exported from VEMCO VUE software. Such
a file is included in the glatos package.

#get path to example CSV file included with glatos package
csv_file <- system.file("extdata", "VR2W_109924_20110718_1.csv",
package = "glatos")

Now that we have the path to a VUE export file, we will read the data using read.csv. In this case we are also
setting some read.csv arguments to non-default values. First, we set as.is = TRUE so that character values
are treated as characters and not converted to factors. Second, we set check.names = FALSE to prevent
conversion of syntactically-invalid column names to syntactically valid names. This simply keeps the names
exactly as they appear in the source text file rather than, for example, replacing spaces with a dot (.). This
does mean that we need to wrap those column names in back-ticks when called (e.g., dtc$>Sensor Value®).
Third, we set fileEncoding = "UTF-8-BOM" to match the encoding of the text file. If this argument is
omitted then you might see special characters added to the first column name. Setting the fileEncoding may
also slow down the import.

dtc <- read.csv(csv_file, as.is = TRUE, check.names = FALSE,
fileEncoding = "UTF-8-BOM")

data.table tip: Use fread instead of read.cswv.

library(data.table)

#read data from csv file using data.table::fread
#name dtc2 (data.table) to distinguish from dtc (data.frame) in this script
dtc2 <- fread(csv_file, sep = ",", header = TRUE, fill = TRUE)

Note also that we use "fill = TRUE" because by default VEMCO VUE
exports do not include a comma for every column in the CSV file.

fread is fast. That’s one reason it is used used by read_ glatos detections and other glatos func-

BLOTLS. e e e e e e e e e e e e A e A e A A i A A i AP P A A i

Now we will reformat to be consistent with a glatos detections object. We will do this for each of the
required columns described above.

2.2.3.1 detection__timestamp__utc

Change the column name from Date and Time (UTC) to detection_timestamp_utc. There are many ways
to do this (e.g., reference columns by number; names (dtc) [1] <- "detection_timestamp_utc") but in the
code below use of match() to get the column number is robust to changes in column order.

#change column name
names (dtc) [match("Date and Time (UTC)", names(dtc))] <- "detection_timestamp_utc"

data.table tip: Use setnames to change column names.

#use data.table::setnames to change column names via old and new names
setnames(dtc2, "Date and Time (UTC)", "detection_timestamp_utc")

setnames(z, old, new)... could it be more intuitive?

Notice that there are no assignment operators (<- or =) in this code. This is because setnames,
like other data.table functions, updates the target object (in this case dic) directly (aka: by
reference).

Finally, we format the timestamp column using base R function as.POSIXct. All POSIXct objects are
stored internally as a number representing the number of elapsed seconds since “1970-01-01 00:00:00” in
UTC. When we convert a character string to POSIXct, we need to tell R how to convert it-namely the
time zone of the input data. By default, as.POSIXct will assume your local system time zone (e.g., the one
returned by Sys.timezone(). To prevent timezone errors, always specify time zone (using the ¢z argument)
whenever you coerce any timestamp to POSIXct. In this case, the timestamps were exported from VUE in
UTC, so we use the following:

dtc$detection_timestamp_utc <- as.POSIXct(dtc$detection_timestamp_utc,
tz = "UTC")

#take a peek
str(dtc$detection_timestamp_utc)
#> POSIXct[1:69708], format: "2011-04-11 20:17:49" ...

#first few records
head(dtc$detection_timestamp_utc, 3)
#> [1] "2011-04-11 20:17:49 UTC" "2011-05-08 05:38:32 UTC" "2011-05-08 05:41:09 UTC"

data.table tip: Use := to add or modify a column.

;= is an assignment operator for data.table objects that assigns objects by reference. We use it
because it is more compact than base R methods.

#use ':=' to format timestamps
dtc2[, detection_timestamp_utc := as.PO0SIXct(detection_timestamp_utc,
tz = "UTC")]

Note that, like in the previous boxed tip, there are no assignment operators <- or = because dtc
is updated by reference.

lubridate tip: Use fast_strptime to set timestamps.

#just for this example, we convert detection_timestamp_utc back to string
dtc2$detection_timestamp_utc <- format(dtc2$detection_timestamp_utc)
class(dtc2$detection_timestamp_utc) #now character string again

#fast_strptime ts the fastest way we know to ceorce strings to POSIX
dtc2[, detection_timestamp_utc :=
lubridate::fast_strptime(detection_timestamp_utc,
format = ") Y-Ym-%d %H:%M:%0S",
tz = "UTC",
1t = FALSE)]

fast_strptime requires a bit more code because we have to specify format and set 1t = FALSE
so that POSIXct is returned instead of the default (POSIXIt) for this function.

Notice that we formatted the timestamps using fast strptime but also used data.table’s set
operator (:=) to assign it to the target column.

2.2.3.2 receiver__sn

There is no single column in the VUE export data with receiver serial number, so we need to extract it from
the Receiver column.

dtc$Receiver[1]
#> [1] "VR2W-109924"

To do this, we will write a function (get_rsn) to extract the second element of the hyphen-delimited string
in the Receiver column using the base R function strsplit. We then use the sapply function to “apply” our
custom function to each element (record) of the Receiver column.

#make new function to extract second element from a hyphen-delimited string
get_rsn <- function(x) strsplit(x, "-")[[1]][2]

#apply get_rsn() to each record in Recetiver column
dtc$receiver_sn <- sapply(dtc$Receiver, get_rsn)

data.table tip: Use by argument in data.table to update a column by groups.

#make new column "receiver_sn'; parse from "Receiver”
dtc2[, receiver_sn := get_rsn(Receiver), by = "Receiver"]

This is more efficient because it operates on groups instead of each individual record.

2.2.3.3 deploy_lat and deploy__long

The Latitude and Longitude values are all zero in this data set because the VUE database from which these
data were exported did not contain any latitude or longitude data. To add those data to these detections,
we will make a new data frame containing latitude and longitude data along with other receiver data and
merge the new receiver data with the detection data.

The code below shows a simple left join on receiver__sn, which assigns the same receiver location data to all
detection records on that receiver without time consideration.

#make an example receiver data frame
rcv <- data.frame(
glatos_array = "DWM",
station = "DWM-001",
deploy_lat = 45.65738,
deploy_long = -84.46418,
deploy_date_time = as.PO0SIXct("2011-04-11 20:30:00", tz = "UTC"),
recover_date_time = as.P0SIXct("2011-07-08 17:11:00", tz = "UTC"),
ins_serial no = "109924",
stringsAsFactors = FALSE)

#left join on recetver serial number to add receiver data to detections
dtc <- merge(dtc, rcv, by.x = "receiver_sn", by.y = "ins_serial_no",
all.x = TRUE)

take a look at first few rows
head(dtc, 3)

#> recetver_sn detection_timestamp_utc Receiver Transmitter Transmitter Name
#> 1 109924 2011-04-11 20:17:49 VR2W-109924 A69-1303-63366 NA
#> 2 109924 2011-05-08 05:38:32 VR2W-109924 A69-9002-4043 NA
#> 3 109924 2011-05-08 05:41:09 VR2W-109924 A69-9002-4043 NA
#> Transmitter Serial Sensor Value Sensor Unit Station Name Latitude Longitude

#> 1 NA NA NA NA NA

#> 2 NA 5 ADC NA NA NA

#> 3 NA 7 ADC NA NA NA

#> glatos_array station deploy_lat deploy_long deploy_date_time

#> 1 DWM DWM-001 45.65738 -84.46418 2011-04-11 20:30:00

#> 2 DWM DWM-001 45.65738 -84.46418 2011-04-11 20:30:00

#> 3 DWM DWM-001 45.65738 -84.46418 2011-04-11 20:30:00

#> recover_date_time

#> 1 2011-07-08 17:11:00

#> 2 2011-07-08 17:11:00

#> 3 2011-07-08 17:11:00

Note that new columns have been added to dtc, including deploy lat, deploy long, and two columns
(glatos__array and glatos station) that could serve as optional location grouping variables. Columns de-
ploy__date_time and recover _date time (POSIXct objects) are not required columns, but are useful for
removing detections that occurred before receiver deployment or after recovery.

Two limitations of this simple join shown above are that it:

« is inadequate if any receiver is deployed at more than one location.
¢ includes detections that occurred before receiver deployment and after receiver recovery.

To account for those situations and ensure that detections are correctly associated with a location, we will
subset detections to omit any that occurred before deployment or after recovery. For convenience, we use the
base R function with so that we do not have to repeatedly call dtc$... but note that this can be somewhat
risky (see ?with).

#count rows before subset

nrow(dtc)
#> [1] 69708

10

#subset deployments between receiver deployment and recovery (omit others)
dtc <- with(dtc, dtc[detection_timestamp_utc >= deploy_date_time &
detection_timestamp_utc <= recover_date_time,])

#count rows after subset
nrow(dtc)
#> [1] 69703

We removed five rows. Those detections either occurred before receiver deployment or after receiver recovery,
so the location of those detections are unknown.

data.table tip: Use between to subset records by intervals.

#merge detections and Teceivers
dtc2 <- merge(dtc2, rcv, by.x = "receiver_sn", by.y = "ins_serial_no",
all.x = TRUE)

#subset detections that occurred after deployment and before recovery
dtc2 <- dtc2[between(detection_timestamp_utc, deploy_date_time,
recover_date_time)]

nrow(dtc2)

2.2.3.4 transmitter__codespace and transmitter__id

There is no single column in the VUE export data with transmitter code space or transmitter ID code, so we
need to extract them from the Transmitter column. Like we did with receiver sn, we’ll make new functions
to extract the id and codespace from each record, then use sapply to “apply” each of those functions to each
record in Transmitter. Note that the codes space requires an extra step, after we split the string on “-”
then paste the first and second back together to create the code space string.

we

#make a new function to extract id from Transmitter
#i.e., get third element of hyphen-delimited string
parse_tid <- function(x) strsplit(x, "-")[[1]][3]

#make a mnew function to extract codespace from Transmitter
#i.e., get first two elements of hyphen-delimited string
parse_tcs <- function(x) {

#split on "-" and keep first two extiracted elements
tx <- strsplit(x, "-")[[1]11[1:2]

#re-combine and separate by "-"
return(paste(tx[1:2], collapse = "-"))

3

#apply parse_tcs() to Transmitter and assign to transmitter_codespace
dtc$transmitter_codespace <- sapply(dtc$Transmitter, parse_tcs)

#apply parse_tid() to Transmitter and assign to transmitter_<id
dtc$transmitter_id <- sapply(dtc$Transmitter, parse_tid)

11

data.table tip: Use the functional form of := to add/modify more than one column.

dtc2[, " :="(transmitter_codespace = parse_tcs(Transmitter),
transmitter_id = parse_tid(Transmitter)),
by = "Transmitter"]

See 7data.table: :set for description and examples of functional form of :=.

2.2.3.5 sensor_value and sensor__unit

Change the column names from ‘Sensor Value’ and ‘Sensor Unit’ to sensor_value and sensor_unit.

#change column name
names (dtc) [match(c("Sensor Value", "Sensor Unit"), names(dtc))] <-

c("sensor_value", "sensor_unit")

data.table tip: Use setnames to change multiple column names.

setnames(dtc2, c("Sensor Value", "Sensor Unit"),
c("sensor_value", "sensor_unit"))
str(dtc)
#> 'data. frame': 69703 obs. of 19 wariables:
#> $ receiver_sn : chr "109924" ...

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

$ detection_timestamp_utc: POSIXct, format: "2011-05-08 05:38:32" ...
$ Receiver : chr "VR2W-109924" ...

$ Transmitter : chr "A69-9002-4043" ...

$ Transmitter Name : logi NA ...

$ Transmitter Sertal : logi NA ...

$ sensor_walue : int 5 7 ...

$ sensor_unit : chr "ADC" ...

$ Station Name : logi NA ...

$ Latitude : logi NA ...

$ Longitude : logt NA ...

$ glatos_array : chr "DWM" ...

$ station : chr "DWM-001" ...

$ deploy_lat : num 45.7 ...

$ deploy_long : num -84.5 ...

$ deploy_date_time : POSIXct, format: "2011-04-11 20:30:00" ...
$ recover_date_time : POSIXct, format: "2011-07-08 17:11:00" ...

#> ¢ transmitter_codespace : chr "A69-9002" ...
#> $§ transmitter_id : chr "4043" ...

12

2.2.3.6 animal_id

The animal_id column was not included in the VUE database and will need to come from another source.
If no tags were re-used, then a simple solution might be to create a new column and assign it the values of
Transmitter column. In this example, however, we will make a new data frame containing animal data and
merge it with detection data.

The code below shows a simple left join on transmitter codespace and transmitter id, which assigns the
same receiver location data to all detection records of each transmitter without time consideration.

#make an exzample animal (fish) data frame
fsh <- data.frame(
animal id = c("1", "4n, w7n, wi2gn)
tag_code_space = "A69-1601",
tag_id_code c("439", "442", "445", "442"),
common_name = "Sea Lamprey",
release_date_time = as.P0SIXct(c("2011-05-05 12:00",
"2011-05-05 12:00",
"2011-05-06 12:00",
"2011-06-08 12:00"),
(CZR=E G
recapture_date_time = as.PO0SIXct(c(NA, "2011-05-26 15:00", NA, NA),
tz = "UTC"),

stringsAsFactors = FALSE)

#simple left join on codespace and id

dtc <- merge(dtc, fsh, by.x = c("transmitter_codespace", "transmitter_id"),
by.y = c("tag_code_space", "tag_id_code"),
all.x = TRUE)

Two limitations of this simple join are that it:

 is inadequate if any transmitter was deployed more than once.
o includes detections that occurred before transmitter deployment (animal release) and after transmitter
recovery (animal recapture).

To account for these circumstances, we will perform a conditional subset in the next step. Specifically, one
tag (tag_id_code = 442) was re-used, but we did not account for this in the above merge (a simple left
join). So we now need to subset to omit detections that occurred before release or after recapture.

#count rows before subset
nrow(dtc)
#> [1] 69711

#subset detections to include only those between release and rTecapture
or after release if mever recaptured
dtc <- with(dtc, dtc[detection_timestamp_utc >= release_date_time &
(detection_timestamp_utc <= recapture_date_time |
is.na(recapture_date_time)) , 1)

data.table tip Use between to query records or evaluate statements by intervals.

13

#merge detection with fish data
#note that allow.cartesian is needed to acknowledge one-to-many join
dtc2 <- merge(dtc2, fsh,
by.x = c("transmitter_codespace", "transmitter_id"),
by.y = c("tag_code_space", "tag_id_code"),
all.x = TRUE, allow.cartesian = TRUE)

#subset detections between release and recapture
dtc2 <- dtc2[between(detection_timestamp_utc, release_date_time,
recapture_date_time) | is.na(recapture_date_time),]

#count rows after subset
nrow(dtc)
#> [1] 69703

We should now have a detection dataset that will meet the requirements of glatos functions.

3 Receiver location data

3.1 Requirements

glatos functions that accept receiver location data as input will typically require a data.frame with one or
more of the following columns:

e deploy_lat

o deploy_long

e deploy_ date_ time
e recover date time

Some functions will also require at least one categorical column to identify location (or group of locations).
These can be specified by the user, but examples of such columns in a GLATOS standard receiver locations
file are:

e glatos_ array
e station
o glatos_ project_ receiver

For definitions of any of the above fields, see the Data Requirements vignette and function-specific help files
(e.g., Tabacus_plot).

Any data.frame that contains the above columns (in the correct formats) should be compatible with all glatos
functions that accept receiver data as input. Use of the data loading function read glatos receivers will
ensure that these columns are present and formatted correctly, but can only be used on data in GLATOS
format. Data in other formats will need to be loaded using other functions (e.g., read.csv, fread, etc.) and
carefully checked for compatibility with glatos functions (see Other formats - CSV file exported from a VUE
database).

14

data_requirements.html

3.2 Examples
3.2.1 Loading GLATOS data (entire network)

The read__glatos receivers function reads in receiver location data obtained from the GLATOS Data Portal
and checks that the data meet requirements of glatos functions. Data are read using fread in the data.table
package, timestamps are formatted as class POSIXct.

We will get the path to the sample receivers.csv (example included in the glatos package) using system.file,
then read the data using read_glatos receivers, and view the structure of the result.

#get path to example receiver_locations file
rec_file <- system.file("extdata", "sample_receivers.csv",
package = "glatos")

#read sample_receivers.csv using 'read_glatos_receivers'
rcv <- read_glatos_receivers(rec_file)

#view structure

str(rcv)

#> Classes 'glatos_receivers' and 'data.frame': 898 obs. of 23 wariables:
#> § station : chr "WHT-009" ...

#> $ glatos_array : chr "WHT" ...

#> ¢ station_no : chr "9" ...

#> $§ consecutive_deploy_mno: int 1 2 ...

#> $ intend_lat : mum NA NA ...

#> $§ intend_long : num NA NA ...

#> ¢ deploy_lat : num 43.7 ...

#> $ deploy_long : num -82.5 ...

#> $§ recover_lat : mum NA NA ...

#> $ recover_long : num NA NA ...

#> ¢ deploy_date_time : POSIXct, format: "2010-09-22 18:05:00" ...
#> § recover_date_time : POSIXct, format: "2012-08-15 16:52:00" ...
#> $ bottom_depth : num NA NA ...

#> $ riser_length : num NA NA ...

#> $§ instrument_depth : num NA NA ...

#> $ ins_model_mno : chr "VR2W" ...

#> § glatos_ins_frequency : int 69 69 ...

#> $ ins_serial_mo : chr "109450" ...

#> § deployed_by : chr "" ...

#> $ comments : chr "" .

#> $§ glatos_seasonal : chr "NO" ...
#> § glatos_project : chr "HECWL" ...
#> $ glatos_ups : chr "NO" ...

The result is an object with 23 columns (including the required columns described above) and two classes:
glatos__receivers and data.frame. The glatos receivers class label indicates that the data set was created
using a glatos load function and therefore should work with any glatos function that accepts receiver data
as input.

3.2.2 Loading GLATOS data (single project workbook)

The read__glatos__workbook function reads in receiver location data from a standard GLATOS project work-
book (*.xlsm file) and checks that the data meet requirements of glatos functions. Data are read using

15

https://glatos.glos.us/portal

read Workbook in the openxlsx package, timestamps are formatted as class POSIXct.

We will get the path to the walleye__workbook.xlsm (example included in the glatos package) using system.file,
then read the data using read_glatos workbook, and view the structure of the result.

#get path to example walleye_workbook.xzlsm file
wb_file <- system.file("extdata", "walleye_workbook.xlsm",
package = "glatos")

#read walleye_workbook.xzlsm using 'read_glatos_workbook'
wb <- read_glatos_workbook(wb_file)

#view structure

class(wb)

#> [1] "glatos_workbook" "list"

names (wb)

#> [1] "metadata" "animals" "receivers"”

The result is a list (also a glatos_workbook) object with three elements containing data about the project and
the data file (metadata), the fish that were tagged and released (animals), and the receivers (receivers). The
receivers element is actually the result of merging two sheets in the source file: deployments and recoveries.
Next, we will extract the receiver element from the workbook object and view its structure.

#extract receivers element from workbook list
rcv2 <- wb[["receivers"]]

#view structure

str(rcv2)

#> Classes 'glatos_recetvers' and 'data.frame': 1039 obs. of 41 wariables:
#> $ glatos_array : chr "BBI" ...

#> § glatos_project : chr "HECWL" ...

#> § station_no : chr "5" ...

#> $§ consecutive_deploy_mo : num 1 1 ...

#> § ins_sertal_mo : chr "109493" ...

#> $ otn_array : chr NA ...

#> $ mooring drop_dead_date : Date, format: NA ...
#> ¢ intend_lat : chr NA ...

#> § intend_long : chr NA ...

#> $ otn_mission_id : chr NA ...

#> § deploy_date_time : POSIXct, format: "2010-09-14 15:58:00" ...
#> ¢ deploy_lat : num 45.7 ...

#> $§ deploy_long : num -84.4 ...

#> § bottom_depth : mum NA NA ...

#> $ riser_length : num NA NA ...

#> $ instrument_depth : num NA NA ...

#> $ checwlk_complete_time : chr NA ...

#> ¢ status_in : chr NA ...

#> $ ins_model_mo : chr "VR2W" ...

#> § glatos_ins_frequency : chr "69" ...

#> $ rcu_modem_address : chr NA ...

#> $ sync_date_time : POSIXct, format: NA ...

#> $ memory_erased_at_deploy : chr NA ...
#> $ rcu_battery_install_date : Date, format: NA ...
#> $ rcu_expected_battery life: chr NA ...

16

rcvu_voltage_at_deploy : chr NA ...

> ¢
#> $ rcu_tilt_after_deploy : chr NA ...
#> § deployed_by : chr NA ...
#> $§ comments : chr NA ...
#> § glatos_seasonal : chr "NO" ...
#> $ glatos_vps : chr "NO" ...
#> $§ ar_confirm : chr NA ...
#> $ data_downloaded : chr NA ...
#> $ ins_model_number : chr NA ...
#> § recovered : chr NA ...
#> $ recover_date_time : POSIXct, format: "2011-09-16 18:50:00" ...

#> $ recover_lat : num NA NA ...

#> $ recover_long : num NA NA ...

#> § location_description : chr "Bois Blanc Island (East line)" ...
#> $ water_body : chr "Lake Huron" ...

#> $ glatos_region : chr "Lake Huron'

The result contains 41 columns and two classes: glatos receivers and data.frame. Despite some differences
between the structure of this project-specific data object and the network-level data object loaded in the
previous example, both have been minimally modified to meet the requirements of any glatos function that
accepts receiver data as input.

3.2.3 Other formats

Receiver location data in any format than one of the GLATOS standards will need to be:

1. loaded into R using some other function (e.g., read csv, fread, etc) and

2. modified to ensure that all requirements of the desired function are met.

This vignette does not include an example of receiver location data loaded from CSV because the methods
would be very similar to those described above. For example, you might step through each required column
described in the Data Requirements vignette), check that each column meets glatos requirements, and modify
accordingly using methods described above for detection data from a CSV file exported from VUE (see Other
formats - CSV file exported from a VUE database)

4 Animal tagging and biological data

4.1 Requirements

There are currently no glatos functions that require animal tagging and biological data other than those
columns present in the required detection data. Therefore, there are no formal requirements of such data
in the package. Nonetheless, the read glatos workbook function can be used to facilitate loading animal
tagging and biological data from a standard GLATOS project workbook (*.xlsm file) into an R session.

Use of the data loading function read_ glatos workbook will ensure that animal data are loaded efficiently
and consistently among users, but can only be used on data in GLATOS format. Data in other formats
will need to be loaded using other functions (e.g., read.csv, fread, etc.). Although there are currently no
glatos requirements of animal data, any future requirements might be expected to be consistent with the
glatos__animals class.

17

data_requirements.html

4.2 Examples
4.2.1 Loading GLATOS data (single project workbook)

The read__glatos _workbook function reads animal tagging and biological data from a standard GLATOS
project workbook (*.xlsm file; tagging sheet). Data are read using read Workbook in the openzlsz package,
timestamps are formatted as class POSIXct.

We will again use data from the same walleye_workbook.xlsm example file used in the previous section (see
data loading steps above), but will extract the animals element and view its structure.

#extract animals element from workbook list
fsh <- wb[["animals"]]

#view structure

str(fsh)

#> Classes 'glatos_animals' and 'data.frame': 543 obs. of 55 wvariables:
#> $ animal_id : chr "120" ...

#> $ tag_type : chr NA ...

#> $ tag_manufacturer : chr "VEMCO" ...

#> $ tag_model : chr "Vi6-4z" ...

#> $ tag_serial_number : chr "1106553" ...

#> § tag_id_code : chr "32024" ..

#> $ tag_code_space : chr "A69-9001" ...

#> $ tag_implant_type : chr "internal” ...

#> $ tag_activation_date : Date, format: NA ...
#> § est_tag life : chr "1338" ...

#> § tagger : chr NA ...

#> $ tag_owner_pi : chr NA ...

#> $ tag_owner_organization : chr NA ...

#> $ common_name_e : chr "walleye" ...

#> ¢ scientific_name : chr "Sander vitreus' ...
#> § capture_location : chr "Maumee River" ...

#> $ capture_latitude : num 41.6 ...
#> $ capture_longitude : num -83.6 ...
#> $ wild_or_hatchery : chr NA ...

#> § stock : chr NA ...

#> § length : num 0.627 0.706 ...

#> $ wetght : num NA NA ...

#> $ length_type : chr "total” ...
#> $ age : chr "7" ...

#> $ sex : chr "F" ...

#> $§ dna_sample_taken : chr NA ...
#> § treatment_type : chr NA ...
#> $ release_group : chr NA ...

#> $§ release_location : chr "Maumee" ...

#> § release_latitude : num 41.6 ...

#> $ release_longitude : num -83.6 ...

#> § utc_release_date_time : POSIXct, format: "2011-03-28 04:00:00" ...
#> $ capture_depth : num NA NA ...

#> $ temperature_change : num NA NA ...

#> $§ holding_ temperature : num NA NA ...

#> § surgery_location : chr "Maumee" ...

#> § date_of_surgery : Date, format: NA ...

18

#> § surgery_latitude : num 43.6 ...
#> $§ surgery_longitude : num -84.2 ...
#> $ sedative : chr NA ...

#> $§ sedative_concentration : chr NA ...

#> $ anaesthetic : chr NA ...

#> ¢ buffer : chr NA ...

#> $ anaesthetic_concentration : chr NA ...

#> $§ buffer_concentration_in_anaesthetic : chr NA ...

#> § anesthetic_concentration_in_recirculation: chr NA ...
#> $§ buffer_concentration_in_recirculation : chr NA ...

#> $ dissolved_ozygen : chr NA ...

#> $ comments : chr NA ...

#> § glatos_project : chr "HECWL" ...

#> $§ glatos_external_tag_idl : chr "5017" ...
#> § glatos_external_tag_id2 : chr "5016" ...
#> $ glatos_tag _recovered : chr "NO" ...

#> $ glatos_caught_date : Date, format: NA ...
#> $ glatos_reward : chr NA ...

The result contains 55 columns and two classes: glatos animals and data.frame.

4.2.2 Other formats

Receiver location data in any format than one of the GLATOS standards will need to be:

1. loaded into R using some other function (e.g., read csv, fread, etc) and

2. modified to ensure that all requirements of the desired function are met.

This vignette does not include an example of animal tagging and biological data loaded from CSV because the
methods would be very similar to those described above. Moreover, there are currently no glatos functions
that require animal tagging and biological data other than those present in glatos detections data. Although
the glatos package currently does not contain any specific requirements of animal tagging and biological data,
future requirements might be expected to resemble key columns of glatos animals objects.

5 Transmitter specification data

5.1 Requirements

There are currently no glatos functions that require transmitter specification data. Therefore, there are
no formal requirements of such data in the package. Nonetheless, the read vemco_tag specs function can
be used to facilitate loading transmitter specification data from a standard VEMCO tag spec (*.xls) file
provided to tag purchasers from VEMCO.

Use of the data loading function read vemco tag specs will ensure that transmitter specificaiton data are
loaded efficiently and consistently among users, but can only be used on data in VEMCO standard format.
Data in other formats will need to be loaded using other functions (e.g., read.csv, fread, etc.). Although
there are currently no glatos requirements of transmitter specification data, any future requirements might
be expected to be consistent with the output of read_vemco_ tag specs.

19

5.2 Examples
5.2.1 Loading data from a VEMCO tag specs file
The read__vemco__tag specs function reads transmitter specification data from a standard VEMCO tag specs

(*xls file). Data are read using read__excel in the readzl package.

We will get the path to the lamprey tag specs.xls (example included in the glatos package) using system.file,
then read the data using read_vemco__tag specs, and view the structure of the result.

#get path to example lamprey_tag_specs.xzls file
spec_file <- system.file("extdata", "lamprey_tag_specs.xls",
package = "glatos")

#read lamprey_tag_specs.zls using 'read_vemco_tag_specs'
my_tags <- read_vemco_tag_specs(spec_file, file_format = "vemco_x1ls")

#vutew structure
class(my_tags)

#> [1] "list"
names (my_tags)
#> [1] "specs" "schedule"

The result is a list object with two elements containing data about the transmitter specifications (specs) and
the operating schedule (schedule). Next, we will view the structure of each element, starting with specs.

#view structure of specs element
str(my_tags$specs)

#> 'data. frame': 4 obs. of 18 wariables:
#> $ sales_order : chr "11189" ...

#> $ serial_number : chr "1109712" ...
#> $ manufacturer : chr "Vemco" ...

#> § model : chr "V9-2z-069k-1" ...

#> $ id_count : num 1 1

#> § code_space : chr "A69-1601" ...
#> $ id_code : chr "1362" ...

#> $ n_steps : int 1 1 ...

#> $§ sensor_type : chr NA ...

#> § sensor_range : chr NA ...

#> $ sensor_units : chr NA ...

#> $ sensor_slope : num NA NA ...

#> § sensor_intercept : num NA NA ...

#> $ accel_algorithm : chr NA ...

#> $ accel_sample_rate : num NA NA ...

#> $§ sensor_transmit_ratio: num NA NA ...
#> § est_battery_life_days: num NA NA ...
#> $ battery_ life_stat : chr "95]" ...

The result contains 18 columns of transmitter characteristics that do not change over time.

#view structure of schedule element
str(my_tags$schedule)

#> 'data. frame': 16 obs. of 11 wariables:
#> $ serial_number : chr "1109712" ...

20

#> $§ code_space : chr "A69-1601" ...
#> $§ id_code : chr "1362" ...

#> § step : int 1 2 ...

#> § next_step : chr "2" ...

#> § status : chr "ON" ..

#> § duration_days : num 101 365 ...
#> § power : chr "H" ...

#> $ min_delay_secs : num 40 NA ...

#> $ maz_delay_secs : num 80 NA ...

#> $ accel_on_time_secs: num NA NA ...

The result contains 11 columns of transmitter characteristics that change over time. These may be used to
estimate the operating characteristics (e.g., power, min__delay, maz_delay, etc.) on a specific date following
activation or release.

5.2.2 Other formats

Transmitter specification and schedule data in any format than one of the GLATOS standards will need to
be:

1. loaded into R using some other function (e.g., read__csv, fread, etc) and

2. modified to ensure that all requirements of the desired function are met.

This vignette does not include an example of transmitter specification and schedule data loaded from
CSV because the methods would be very similar to those described above. Moreover, there are cur-
rently no glatos functions that require transmitter specification and schedule data other than those present
in glatos_detections data. Although the glatos package currently does not contain any specific require-
ments of these data, future requirements might be expected to resemble key columns of the output of
read_vemco__tag specs.

21

	Overview
	Loading data from GLATOS, OTN, and VEMCO
	Built-in functions
	Data objects and classes

	Loading data from other sources
	Tips to improve speed and efficiency

	Detection data
	Requirements
	Examples
	Loading GLATOS data
	Loading OTN data
	Other formats - CSV file exported from a VUE database

	Receiver location data
	Requirements
	Examples
	Loading GLATOS data (entire network)
	Loading GLATOS data (single project workbook)
	Other formats

	Animal tagging and biological data
	Requirements
	Examples
	Loading GLATOS data (single project workbook)
	Other formats

	Transmitter specification data
	Requirements
	Examples
	Loading data from a VEMCO tag specs file
	Other formats

